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A generalization of the definition of an equivalence group is proposed and a group classification of a 

system of equations describing the two-dimensional flows of an ideal gas [l] is given. Plane flows, which 

were earlier investigated from the group point of view in [2-4], are a special case of such motions. The 

algebraic approach employed rests on an analysis which has recently been developed [5, 61. 

1. THE FACTOR SYSTEM 

Solutions of the equations of gas dynamics invariant under the operator X, from the optimum 
system of sub-algebras of the algebra h, [5] are considered. For simplicity in comparing our 
results with existing results for plane flows, our discussion will be carried out for a similar 
operator X3 = az, the invariants of which are t, x, y, u, 2), W, p, p. The usual notation will be 
employed, namely, t is the time, (x, y, z) are spatial coordinates, U = (u, TV, W) is the velocity, p is 
the density, and p is the pressure of the gas. the invariant solution has the representation 

u = U(r,x,y), p = p(t,-Gy), p = p(t,x,y) 

while the factor system is 

d,U+p-‘V,p=O, d,p+pdiv, U =0 

d,p+ A(p,p)div, (I = 0 

(d, =ai +&I, +ua,, V, =ca,,a,,o), div,u=~,~+U~) 

(1.1) 

Particular solutions of system (1.1) with w = 0 describe plane-parallel flows of a gas in the 
R’(x, y) plane. 

2. THE EQUIVALENCE GROUP 

For problems of group classification it is important to determine those transformations 
which change arbitrary elements, which are contained in the equations, while preserving the 
differential structure of the equations themselves. 

Here we will give a construction of a group of equivalence transformations which is wider 
than that used in [7]. A generalization is achieved by including arbitrary elements in all 

tPrikl. Mot. Mekh. Vol. 58, No. 4, pp. 56-62, 1994. 
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coordinates of an infinitesimal operator, by means of which an equivalence group is set up. 
The possibility of choosing a representative in a group classification is then widened. For 
simplicity in describing the idea, the discussion will be carried out using the example of the 
differential equation 

F(x, u, @v u,) = 0 (2.1) 

where x = (x, y) are the independent variables, II = u(x) is the required function, and Q = $(u, x) 
is an arbitrary element. We will then seek a single-parameter group of continuous 
transformations 

with group parameter a and infinitesimal operator 

We will assume that all the coordinates of the infinitesimal operator X’ depend on (x, u, 9) 
unlike the approach used in [7], where this only applies to the component cQ. The functions 
$(u, x) and u(x) act in different spaces, and hence, before writing the formulae for the 
coordinates of the continued operator X” one must understand how the functions $(u, x) and 
U(X) are transformed by the action of the group (2.2), on which the following constraint is 
imposed. Any solution U,,(X) of Eq. (2.1) with the function $(u, x) when acted upon by (2.2) 
converts once more into the solution of an equation of the form (2.1), but with another 
(converted) function (P#(u, x) which is defined in the usual way. Thus, by solving the following 
relations for (x, 16) 

we obtain 

x = gX(x’,u’;u), u =gU(x’,u’;u) (2.4) 

after which the transformed function T,(+) is determined 

where, instead of (x, u) we have substituted their expressions (2.4). The transformed solution 
T,(U) = U,(X) is obtained by solving the relations 

for x = ~“(a’; a) and substituting these solutions into 

Lemma. The transformations TO(u) constructed in this way form a group. 

Proof. Since (2.2) forms a single-parameter group of continuous transformations, then, by 
the method of construction, the equality T,(T,(+)) = T,,(+) is satisfied. Taking this property 
into account, equating T,(T,(u)) and T8+6( u we complete the proof of the lemma. ) 

In agreement with the construction, the extended operator 
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has the following coordinates, which are connected with the dependent functions 

Here h takes the values x and y. The coordinates of the extended operator F, connected 
with an arbitrary element, are defined by the formulae 

i$=a,+aa, (~=u,x,Y) 

To construct the equivalence group of Eqs (2.6) we need to obtain the group (2.7) 
admissible by it with the extended operator X’ constructed above. Here we must take into 
account possible special, previously known properties of the arbitrary elements (for example, 
$,=O). 

We can take as one of the examples of the extension of the equivalence group in this approach the 

group for the system of two equations with two independent variables [8] 

If we search for the equivalence group of this system such that all the coefficients of the operator can 
depend on the arbitrary elements, we must add to the operators from [8] one more pa, + x3, correspond- 
ing to the transformation 

u’=ap(u,u)+u, u’=v, x’=x, t’=t+ar, g’=g, p’=p 

Returning to system (1.1) for its group classification we will seek the equivalence trans- 
formation operators in the form 

xe = (‘a, + ya, + cyay +.<‘a,, + <‘a, + yaw + pap + cPap +(*a* (2.6) 

Unlike [7], a dependence on the arbitrary element A in all the coordinates of the 
infinitesimal operator X’ is admissible. Since A = A(p, p), the operator (2.6) must satisfy the 
conditions of invariance of system (1.1) supplemented by the equations 

A,=A,=A,=A,=A,,=A,=O (2.7) 

The coordinates of the extended operator 

are found from the formulae 

(h=u,u,w,p,p; h=t,x,y) 
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The coordinates of the extended operator (2.8) connected with the arbitrary element, by 
virtue of (2.7) are found from the formulae 

CA1 = fii<” - Api@’ - A,i$<P (h = t,x,y) 

CA” = L$,” - A,b;<P - Apfi;cP (h = u, u, w,p, p) 

b; =a, (~=t,~,~), 6; =a,, (h=u,u,w) 

E; =a,+A,a,, b;=a,+A,a, 

The group of transformations constructed using operator (2.6), which is allowed by Eqs (1.1) 
and (2.7), converts system (1.1) while preserving its differential structure and only changing 
the arbitrary element A. 

For system (1.1) the equivalence group is identical with the classical one, when it is assumed 
that only the coefficients of the infinitesimal operator for the derivatives of the arbitrary 
elements [7] depend on the arbitrary elements. It is generated by the operators 

a,,a,, fa, +a,, fay +a, 

xay -ya, +ua, -~a,, a,, tai+Xa, +ya, 
xa,+yay+ua, +Ua,-2pap, pap+Pap+AaA, ap9 $waw 

Note. As will be seen below, in the admissible algebra for an arbitrary function A(p, p) there is an 

operator @((w, S)a,, where S is a certain function which depends on p and p and satisfies the equation 

pSP+ASp =0 (2.9) 

This operator is also obtained in an equivalence group, if we supplement it by one more arbitrary element 
S = S(p, p), and we add (2.9) to Eqs (1.1) and (2.7) and 

s, = s, = sy = s, = s, = SW = 0 (2.10) 

In this case, the equivalence group is only extended to the operators CpJ, and Fa, with the functions 

o = o(w, S), F = F(w, S, p-A Inp). The use of the algorithm in [7] to find the equivalence group for Eqs 
(l.l), (2.9) and (2.10) does not give these operators. 

3. THE ADMISSIBLE GROUP 

The operator admissible by system (1.1) can be represented in the form 

x={*a,+ya, +ya, +yau +ya,+ya,+yap+yap 

Integration of the defining equations reduces to solving the following equations 

*=2c4(2p-A) 
at 

Here 
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5’ = cqt* +qt +c9, C” = t$(w,S), 5” = c,t -c*y+cJx+c&+c6 

5’ =Cgt+C*X+CJy+C&Y+C,, ~U=-c,u+c,u+c,x-2c,ru-c*U 

C” = c*u + cju + c,y - 2C@ - C*U 

cp = -p(o, + c* + 2cqt), cp = pa,(O+a,(O, q =-w+c,o 

The kernel of the fundamental Lie algebra is made up of the operators 

x, = +(w,s)a,, x, = a,, X* = aY 

x, =&+a,, x, =ta,+a, 

x9 = x$ - ya, + ua, -ua, 9 x,, =a,, x,, =ra,+xa,+ya, 

Here we have retained the numbering of the operators from [5], and S is the entropy, i.e. a 
certain function which depends on p and p and satisfies Eq. (2.9). 

The group classification of system (1.1) is identical with the group classification of plane- 
parallel gas flows [3]. The distinctive feature of the group properties of system (1.1) is the fact 
that it allows the additional operators X, = wa, with the arbitrary function $(w, s), which make 
up the centre. The admissible Lie algebra is decomposed into the direct sum L = & $ L:, 
where L: consists of the operators X,. Extension of the kernel of the main Lie algebras 
occurs by specializing the function A@, p).The results of the group classification, apart from 
the forms of the extending operators, are identical with Table 1 from [5]. In it the extending 
operators must be assumed to be 

I; =ta, -du -ud,+zpa,. y2 =pap+pap, y3 =ap 

y4 = r*a, + txa, + tya, + cx - tuja, + (y - tu)a, - 2tpa, - 4’paP 

y, = P#‘(P)aP + 40)a, 

with arbitrary function $(p). 

Note that the factor algebra of the normalizer of the operator X, and &, with respect to X, 

(Nor,,(X,)/X,) consists of operators (here and below we will only indicate the number of the 
operators): (1,2,3,4,5,6,9,10, ll), which in the invariants of the operator X, take the values 
(we have only written the changeable operators) 

x, =a,, x,, =ta,+d,+ya, 

4. THE OPTIMUM SYSTEM OF SUB-ALGEBRAS 

The difficulty in constructing the optimum system of dissimilar sub-algebras of the algebra L 
is due to the presence of the operator X,. The universal invariant of an infinite-dimensional 
sub-algebra of the algebra L is independent of w, and hence there are no invariant solutions of 
system (1.1) for it, while the partially invariant solutions are determined by its finite- 
dimensional sub-algebra L, of the algebra Z_, = (1, 2, 4, 5,9, 10, 11). Hence, from the point of 
view of constructing invariant and partially invariant solutions of system (1.1) we need to 
investigate the finite-dimensional sub-algebras of algebra L . 

If the function $ in the operator X, depends only on IV, the finite-dimensional sub-algebras 
H,,, of the algebra L = L., @L: apart from similitude, are sub-algebras of the algebra ,C, @(a,, 
wa,, w2aW]. The proof of this follows from Lie’s theorem [9] on the finite-dimensional sub- 
algebras on a straight line. 
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From the point of view of constructing solutions we are interested only in sub-algebras of 
L,, since the solutions that are invariant and partially invariant with respect to the sub-algebras 
of L, @{(a,, wa,, w2&) are a special case of invariant and partially invariant solutions with 
respect to the sub-algebras of L,. This follows from the fact that the operator X, = Q(w)&,, 
from the centre and w do not occur in the other coordinates of the operator. 

Another fact which enables us to ignore the infinite-dimensional part of the permitted 
algebra L is connected in this case with the trivial group stratification of system (1.1) into a 
resolving and autonomous system. For this the space of the dependent variables is extended by 
one more function S, namely, the entropy. Then, using the zero-order invariants [7] t, x, y, U, V, 
p, p a resolving system is obtained consisting of the equations of system (1.1) without the third 
equation, while the automorphous system has two equation d,W =0, d,S=O. Here the 
automorphous system is characterized by the fact that any of its solutions can be obtained from 
one non-degenerate solution [7]. Hence, to find the solutions of system (l.l), obtained from the 
group analysis, it is sufficient merely to construct the optimum system of sub-algebras O(O) of 
algebra L,. 

An algorithm for constructing a normalized optimum system is given in [5]. Here, to obtain 
the optimum system Cl(‘) we used the composition series 

As a result of constructing the optimum system 8 (‘) of sub-algebras of algebra 4 we obtain 
that it is part of the optimum system of algebra L,I1, constructed in [5]. 

It should be noted that the optimum system of sub-algebras of algebra I_, was previously 
constructed in [3]. However, the optimum system obtained there does not satisfy the 
requirement of normalizability, and the series of sub-algebras 

{2,5+~1,4+101 (p@-l>*O> (4.1) 

are missed and there are similar ones. 

5. SOME SOLUTIONS OF SYSTEM (1.1) 

As was established above, the basic solutions of system (1.1) are the solutions describing the 
plane-parallel motions of a gas. All these invariant solutions of system (l.l)w=o for an arbitrary 
function A@, p) are given in [3]. Some partially invariant solutions are also considered there. 
Partially invariant solutions of rank 1 and defect 1 were investigated in [4, lo]. Since the 
optimum system from [3] was used in [4], the solutions obtained using sub-algebras (4.1) were 
missed. We will fill this gap below. 

The partially invariant solutions of rank 1 and defect 1 of (4.1) have the representation 

u=t+U(p), u=(x-t*/2)/p+v(p), p=P(p) 

In order not to obtain a contradiction and to avoid a reduction to invariant solutions, it is 
necessary to assume 

P’=p(U’*+V’*)=A/p, pU’+UV’=O (5.1) 

p,+up,+up,+p(U’p,+V’p,)=O, pV’(V’pr-U’p,)=-1 (5.2) 

Equations (5.2) must form a complete system, otherwise all the first derivatives of the 
dependent functions are determined and the partially invariant solution, by the theorem in [7], 
is reduced to an invariant solution. Hence, we obtain 
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bp V=pln-, 
P+a 

and the function p(t, x, y) is found implicitly from the relation a(&, 5,) = 0 with arbitrary 
function 0(&, c2). Here ~1=x-t2/2-ct-(pV)‘, ~2=y+(t3+ct2-2tx)/2j3)-f(pV)‘-~U-V, a, 
b and c are arbitrary constants a f 0, and the prime denotes differentiation with respect to p. 
These solutions do not exist for an arbitrary equation of state, but only those for which 
W-%-J), p) = a2(PZ /(P +a +c2/pz), where P(p)=~2(ln(p/p+a)+a/(p+a))-2a2c/p2. )’ 

Note. Since P’ = A Ip, the flows considered are isentropic. System (5.1), (5.2) allow a transformation of 

equivalence with operator 

la, +2(x2, +yd,)+ua, +I&, -pap +pd, +Ad, +&J, 

Using it we can obtain j3= 1. This transformation is connected with the presence of an external 
orthomorphism L,, corresponding to the operator 

ta, - Ua, - ua, (5.3) 

By means of the external automorphism (5.3) the series of sub-algebras (4.1) with p # 0 can be reduced to 
t2.5 + 1.4 + 10) (verbal communication from L. V. Ovsyannikov). 
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